Engenharia industrial/Qualidade/O factorial 2^k

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

O factorial 2k[1]

O desenho factorial completo é usado em experiências que envolvem vários factores onde é necessário o estudo conjunto de efeitos dos vários factores numa resposta. Contudo, vários casos especiais do desenho factorial são importantes porque são amplamente usados no trabalho de investigação e porque são a base de outros desenhos factoriais tamém de considerável adoção prática. O mais importande destes casos especiais é o caso de k factores, cada um com apenas dos níveis. Estes níveis podem ser quantitativos, como dois valores de temperatura, pressão ou tempo; podem ser qualitativos, como por exemplo duas máquinas ou dois operadores; ou a presença ou asência de um factor. Um destes facoriais completos requer 2×2××2=2k observaçãoes e é chamado desenho factorial 2k.

Este capítulo foca-se neste importante classe de desenhos de experiências. Até ao fim deste capítulo vamos assumir que (1) os factores são fixos, (2) o desenho é completamente aleatório e (3) a usual assunção de normalidade é satisfeita.

O factorial 2k é particularmente útil nas fazes iníciais do trabalho experimental, quando existem muitos factores a ser investigados. Consequêntemente estes factoriais são amplamente usados em experiências preliminares. Como só há dois níveis em cada factor, assume-se que a resposta é apróximadamente linear na amplitude dos níveis dos factores escolhidos.

O factorial 22

O primeiro desenho da classe de factoriais 2k é o que apenas tem dois factores, por exemplo A e B, cada um com apenas dois níveis. Este desenho factorial é chamado desenho factorial 22. Os níveis dos factores podem ser arbitráriamente chamados de "Alto" e "Baixo". Como exemplo, considere a investigação do efeito da concentração de um reagente e da quantidade do catalisador num processo quimico. O objectivo da experiência é determinar se ajustamentos nos níveis dos factores aumenta o rendimento da reação. Começa-se por chamar ao reagente o factor A e define-se os níveis a estudar de 15 e 25 por cento. O catalisador é o factor B, com o nível alto fixado a duas libras de catalisador e o nível baixo a uma libra. A experiência é replicada 3 vezes, pelo que há 12 observações. A ordem pela qual as observações são retiradas é completamente aleatória. Os dados obtidos estão na tabela abaixo:

Tabela 1 - Resultados das experiências
Factor Combinação

de tratamento

Réplica
A B I II III Total
- - A baixo, B baixo 28 25 27 80
+ - A alto, B baixo 36 32 32 100
- + A baixo, B alto 18 19 23 60
+ + A alto, B alto 31 30 29 90

As quatro combinações de tratamento deste desenho, estão representadas gráficamente na figura abaixo. Por convenção denotam-se os efeitos dos factores com uma letra latina maiúscula. Então "A" refere-se ao efeito do factor A e "B" refere-se ao efeito do factor B e "AB" refere-se à interacção entre factores. No desenho 22os níveis alto e baixo dos factores A e B são representados por "-" e "+" respectivemente nos eixos A e B. Então o sinal - no eixo A representa o nível baixo de concentração enquanto o sinal + no deixo A representa o nível alto de concentração. Pela mesma lógica o sinal - no eixo B representa o nível baixo de catalisador e o sinal + representa o nível alto de catalisador.

Figura 1 - Representação geometrica do factorial 22

As quatro combinações de tratamento, que também podem ser representadas por letras latinas minúsculas, e o nível baixo de um tratamento também pode ser denotado com a ausência de uma letra. Por convenção (1) é usado para assinalar que todos os factores estão no nível baixo. Esta notação é usada em todos os factoriais 2k. Num desenho factorial de dois níveis define-se o efeito médio de um factor como a variação na resposta produzida pela variação no nível desse factor sobre os níveis do outro factor. Também, os símbolos (1), a, b, e ab representam o total das n réplicas de todas as combinações do tratamento. Então o efeito de A com o nível baixo de B é [a(a)]/n e o efeito de A com o nível alto de B é [abb]/n. A média destas duas quantidades devolve o efeito de A:

A=12n{[abb]+[a(1)]}=12n[ab+ab(1)]

O efeito de B é obtido a partir do edito de A nível baixo [b(1)]/n e o efeito A a nível alto [aba]/n:

B=12n{[aba]+[b(1)]}=12n[ab+ba(1)]

Define-se também o efeito da interacção AB como a média das diferenças entre o efeito de A com B a nível alto e o efeito de A com B a nível baixo:

AB=12n{[abb][a(1)]}=[ab+(1)ab]

Alternativamente pode também definir-se a interação AB como a diferença média do efeito de B com A a nível alto e o efeito de B com A a nível baixo. Isto conduz-nos à mesma equação.

As fórmulas dos efeitos A, B e AB podem ser deduzidas por outro método. O efeito de A pode ser obtido como a diferença das médias da resposta dos dois tratamentos do lado direito do quadrado da figura 1 y¯A+e dos dois tratamentos do lado esquerdo da figura 1 y¯A. Ficamos então com:

A=y¯A+y¯A=ab+a2nb+(1)2n=12n[ab+ab(1)]

Esta é exectamente a mesma expressão a qjue tinhamos chegado quando definimos o efeito de A. O efeito de B é obtido como as diferenças da médias nos tratamentos no topo y¯B+ e fundo y¯B do quadrado da figura 1.

B=y¯B+y¯B=ab+b2na+(1)2n=12n[ab+ba(1)]

Esta é exectamente a mesma expressão a qjue tinhamos chegado quando definimos o efeito de B. Finalmente a interação AB é a média da diagonal da direita para a esquerda da figura 1 [ab e (1)] menos a média da diagonal da esquerda para a direita da figura 1 (a e b).

AB=y¯AB+y¯AB=ab+(1)2na+b2n=12n[ab+(1)ab]

Esta é a expressão do efeito da interação definida acima.

Usando dos valores da figura 1 podemos estimar a média dos efeitos:

A=12×3(90+1006080)=8,33

A=12×3(90+6010080)=5,00

A=12×3(90+8010060)=1,67

A partir destes valores pode verificar-se que o efeito de A (concentração do reagente) é positivo, o que sugere que um ajumento na concentração de 15% para 25% aumenta o rendimento da reação. O efekito de B (catalisador) é negativo o que seugere que um aumento na quantidade de catalisador diminui o rendimento da reação. A interação aparenta ser pequena quando comparada com os dois efeitos principais.

Em muitas experiências envolvento desenhos factoriais 2k interessa ao investigador quantificar a magnitude e a direcção dos efeitos dos factores para determinar que variáveis são mais importantes. A análise de variância pode ser usada para confirmar esta interpretação. Considere a soma dos quadrados de A, B, e AB e note que são usados os contrastes para estimar os efeitos. Por exemplo :

ContrasteA=ab+ab(1)

Pode chamar-se ao contraste o efeito total de um factor. A soma dos quadrados de qualquer contraste pode ser obtida a partir das seguintes expressões:

SSA=[ab+ab(1)]24n

SSB=[ab+ba(1)]24n

SSAB=[ab+(1)ab]24n

Usando os dados da figura 1 podemos calcular a soma dos quadrados:

SSA=5024×3=208,33

SSB=(30)24×3=75,00

SSAB=1024×3=8,33

A soma dos quadrados total é obtida com a seguinte expressão:

SST=i=12j=12k=1nyijk2(i=12j=12k=1nyijk)24n

A soma dos quadrados do erro é obtida com a seguinte expressão:

SSErro=SSTSSASSBSSAB

Aplicando aos dados da figura 1 temos:

SST=282+252+272+362+322+322+182+192+232+312+302+292(28+25+27+36+32+32+18+19+23+31+30+29)24×3=93989075=323,00

E para a soma dos quadrados do erro temos:

SSE=323,00208,3375,008,33=31,34

Estamos então em condições de construir a tabela ANOVA

Tabela 2 - ANOVA
Fonte de

Variação

Soma de

Quadrados

Graus de

liberdade

Quadrado

médio

F0 Valor de

prova

A 208,33 1 208,33 53,15 0,0001
B 75,00 1 75,00 19,13 0,0024
AB 8,33 1 8,33 2,13 0,1826
Erro 31,34 8 3,92

Note que os coeficientes do contraste para estimar os efeitos da interação são simplesmente o produto dos coeficientes dos dois efeitos principais correspondentes. Os coeficientes de contraste são sempre +1 ou -1 e uma tabela de sinais como a tabela 3 pode sempre ser usada para determinar o sinal de cada tratamento.

Tabela 3 - Tabela de sinais para o factorial 22
Combinação do

tratamento

Efeito do factorial
I A B AB
(1) + - - +
a + + - -
b + - + -
ab + + + +

As colunas da tabela 3 são os efeitos principais A, B e a interacção AB. I representa a média total de toda a experiência e a coluna que lhe está associada apenas tem sinais +. as linhas representam as combinações de tratamento. Para en contrar o contraste e estimar qualquer efeito, simplesmente multiplica-se na coluna aproporiada da tabela e soma-se. Por exemplo, para estimar o efeito A o contraste é -(1) + a - b + ab, que é usado na equação do efeito de A

O modelo de regressão

No desenho factorial 2k é fácil expressar o resultado da experiência em termos de um modelo de regressão. Para a experiência do processo quimico da tabela 1 o modelo de regressão é:

y=β0+β1x1+β2x2+ϵ

onde x1é a variável codificada que representa a concentração de reagente, x2 é a variável codificada que representa a quantidade de catalisador, e os β são os coeficientes da regressão. As variáveis x1 e x2 tomam sempre o valor -1 ou +1. O modelo de regressão para este caso é então:

y^=27,5+(8,332)x1+(5,002)x2

Neste caso a intercessão da regressão é 27,5 que é a média global das 12 observações e os coeficiêntes da regressão β^1 e β^2 são metade do efeito estimado para o factor correspondente. A razão para isso é que os coeficiêntes x1 e x2 variam de duas unidades (de -1 a +1).

Resíduos e adequação ao modelo

O modelo de regressão pode ser usado para fazer previsões para os valores obtidos nos quatro pontos do desenho. Os resíduos são as diferenças entre os valores observados e os valores de previsão para y. Seguindo o nosso exemplo, quando a concentração de reagente é baixa e a quantidade de catalisador é também baixa o valor de previsão é:

y^=27,5+(8,332)(1)+(5,002)(1)=25,835

Como há três observações para esta combinação de tratamento os resíduos são:

e1=2825,835=2,165

e2=2525,835=0,835

e3=2725,835=1,165

Os restantes resíduos são calculados de forma semelhantes

Para um nível alto de concentração de reagente e um nível baixo de catalisador temos:

y^=27,5+(8,332)(+1)+(5,002)(1)=34,165

E os respectivos resíduos são:

e4=3634,165=1,835

e5=3234,165=2,165

e6=3234,165=2,165

Para um nível baixo de concentração de reagente e un nível alto de catalisador temos:

y^=27,5+(8,332)(1)+(5,002)(+1)=20,835

E os respectivos resíduos são:

e7=1820,835=2,835

e8=1920,835=1,835

e9=2320,835=2,165

Finalmente para um nível alto de ambos os factores temos:

y^=27,5+(8,332)(+1)+(5,002)(+1)=29,165

E os respectivos resíduos são:

e10=3129,165=1,835

e11=3029,165=0,835

e12=2929,165=0,165

Estamos então em condições de construir o grá fico de probabilidades da distribuição normal.

  1. Design and Analysis os Experiments - Montgomery, D.C.