Métodos numéricos/Equações diferenciais ordinárias

Fonte: testwiki
Revisão em 18h49min de 12 de março de 2016 por imported>He7d3r (Foram revertidas as edições de 177.192.162.200 (disc) para a última revisão de He7d3r)
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

Introdução

Predefinição:W (EDO´s) podem se tornar complexas para serem calculadas através de métodos analíticos, por conta disso alguns dos principais matemáticos também despenderam seu precioso tempo para encontrar maneiras mais rápidas e fáceis de se obter a resolução de EDO´S de primeira ordem. Nessa secção estaremos analisando três dos principais métodos elaborados para solucionar tais problemas,a saber, o método de Euler, o método de Euler aperfeiçoado e o método de Runge Kutta.

Problema de condições iniciais

Um problema de valor inicial (PVI) nada mais é que uma EDO acompanhada de uma condição inicial. Condição inicial é um ponto x (numa função f(x)) que pertence ao domínio da função f(x) que é solução do PVI.

Por exemplo: se conhecemos a função velocidade v(t) podemos perguntar qual será a posição x(t) de uma partícula no instante t. A equação diferencial a resolver será:

dx/dt=v(t),

Cuja solução é x(t)=x(0)+0tv(t)dt.

A posição inicial é necessária para definir unicamente a solução do problema.

Método de Euler

A fórmula que rege esse método é a seguinte
yn+1=yn+h*f(yn,tn) (1.1),

Onde y é igual a f(x) e h é um valor denominado passo; e f(yn, tn) = y'.

A origem da fórmula é a expansão em série de Taylor, da qual retemos apenas o termo de primeira ordem. Vejamos como utilizá-la.

Imagine o gráfico da EDO y'= f'(x), e que em seu domínio existam dois pontos x1 e x2 ; x1 será a coordenada x da condição inicial e x2 é o valor para o qual você deseja a solução do PVI, o passo é um valor que fará um incremento no valor de x1 até que este chegue até x2 nos cálculos seguintes.

O número de incrementos portanto é definido por
(x2 - x1)/h (1.2).

Torne a EDO do PVI em função de yn (observe que este é um termo da fórmula acima).Determine o número de passos pela fórmula 1.2. Feito isto podemos iniciar os cálculos para determinar o valor do PVI para determinado valor de x. A fórmula do método será repetida por várias vezes, portanto por ser um método massivo, seria interessante a utilização de planilhas de cálculo. Para utilizarmos 1.1 devemos primeiramente calcular os valores de yn e y'n. Para a primeira linha do cálculo temos que yn = (y da condição inicial) e y´n é calculado a partir da EDO do PVI para os valores x e y da condição inicial.

Calculados estes dois termos, devemos substituí-los em 1.1, tendo assim efetuado a primeira linha do cálculo, o próximo passo é o cálculo da primeira iteração. Para a primeira iteração temos queyn=(yn+1) calculado na linha anterior e y´n é calculado a partir da EDO do PVI para os valores x + h e (yn+1) da linha de comando anterior; calculados estes dois termos, novamente devemos substituídos em 1.1 e assim terminamos a primeira interação. A segunda iteração tem uma sistemática idêntica a da primeira iteração. Assim iterações sucessivas são executadas até que se atinja a iteração limite calculada anteriormente pela fórmula 1.2; alcançado este valor limite de iteração, o y desejado será o valor da fórmula 1.1 da linha anterior.

Métodos de Taylor

Método de Runge-Kutta

A sistemática de resolução do método de Euler é a mesma que será utilizada para o Método de Runge-Kutta. Porém aqui os termos intermediários serão determinados pelas seguintes fórmulas:[1]

yn+1=yn+1/6(k1+2k2+2k3+k4)
k1=hf(xn,yn)
k2=hf(xn+h/2,yn+k1/2)
k3=hf(xn+h/2,yn+k2/2)
k4=hf(xn+h,yn+k3)

onde, h denota o tamanho do passo.

Problema de condições na fronteira

Método do tiro

Notas

  1. S. D. Conte; Carl de Boor. Elementary Numerical Analysis. 1980. 3ed. p. 365-366

Predefinição:Esboço/Matemática Predefinição:AutoCat